Female mice respond differently to costly foraging versus food restriction.

نویسندگان

  • Kristin A Schubert
  • Lobke M Vaanholt
  • Fanny Stavasius
  • Gregory E Demas
  • Serge Daan
  • G Henk Visser
چکیده

Experimental manipulation of foraging costs per food reward can be used to study the plasticity of physiological systems involved in energy metabolism. This approach is useful for understanding adaptations to natural variation in food availability. Earlier studies have shown that animals foraging on a fixed reward schedule decrease energy intake and expenditure. However, the extent to which these changes depend on decreased food intake or increased foraging costs per se has never been tested. We manipulated foraging costs per food reward in female Hsd:ICR(CD-1) laboratory mice, comparing animals faced with low (L) and high (H) foraging costs to non-foraging animals receiving a food restriction (R) matched to the intake of H animals. Mice in the H group ran as much as L mice did but ate significantly less. They concurrently reduced daily energy expenditure and resting metabolic rate, decreased the size of major metabolic organs and utilized body fat stores; mass-specific resting metabolic rate did not differ between groups. We found evidence that these alterations in energy balance may carry fitness costs. As a secondary response to our experimental treatment, H females and, eventually, some R females ceased to show signs of estrous cyclicity. Surprisingly, results of an immune challenge with keyhole limpet hemocyanin showed that primary immune response did not differ between L and H groups, and was actually higher in R mice. Our results demonstrate that high foraging costs per se--the combination of high activity and low food intake--have pronounced physiological effects in female mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Daily torpor in mice: high foraging costs trigger energy-saving hypothermia.

Many animal species employ natural hypothermia in seasonal (hibernation) and daily (torpor) strategies to save energy. Facultative daily torpor is a typical response to fluctuations in food availability, but the relationship between environmental quality, foraging behaviour and torpor responses is poorly understood. We studied body temperature responses of outbred ICR (CD-1) mice exposed to dif...

متن کامل

Early Fasting Is Long Lasting: Differences in Early Nutritional Conditions Reappear under Stressful Conditions in Adult Female Zebra Finches

Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differentl...

متن کامل

Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice.

Food restriction has been reported to have positive effects on cognition. This study examines how another environmental factor, daylength, can alter the impact of food restriction on the brain and behavior. Female California mice (Peromyscus californicus), housed on either long days (16 h of light and 8 h of darkness) or short days (8 h of light and 16 h of darkness), were restricted to 80% of ...

متن کامل

Optimal foraging by bacteriophages through host avoidance.

Optimal foraging theory explains diet restriction as an adaptation to best utilize an array of foods differing in quality, the poorest items not worth the lost opportunity of finding better ones. Although optimal foraging has traditionally been applied to animal behavior, the model is easily applied to viral host range, which is genetically determined. The usual perspective for bacteriophages (...

متن کامل

The sex-specific effects of diet quality versus quantity on morphology in Drosophila melanogaster

Variation in the quality and quantity of nutrition is a major contributor to phenotypic variation in animal populations. Although we know much of how dietary restriction impacts phenotype, and of the molecular-genetic and physiological mechanisms that underlie this response, we know much less of the effects of dietary imbalance. Specifically, although dietary imbalance and restriction both redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2008